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ROOFAbstract

This paper presents simple approaches for estimating building zone temperature setpoint variations that minimize peak cooling

demand during critical demand periods. Three different methods were developed that are termed the semi-analytical (SA), exponential

setpoint equation-based semi-analytical (ESA), and load weighted-averaging (WA) methods. The three methods are different in terms of

requirements for input data. The SA and ESA methods employ simple inverse building models trained with short-term data and use

analytical solutions from the models to determine setpoint trajectories. The WA method is a data-based method in which an optimal

weighing factor is found that minimizes a weighted-average of two loads and then used for WA of two initial bound setpoint trajectories.

The weighted-averaged setpoint trajectory is adjusted to improve the load shape and can be updated on a daily basis. A companion paper

[Lee K-H, Braun JE. Evaluation of methods for determining demand-limiting setpoint trajectories in commercial buildings using short-

term measurements. Building and Environment 2007, in press] presents evaluations of the peak load reduction potential associated with

implementation of these methods.

r 2007 Elsevier Ltd. All rights reserved.
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UNCORREC1. Introduction

There have been a number of simulation and experi-
mental studies that have demonstrated significant potential
for reducing peak cooling demand using building thermal
mass through control of zone temperatures (e.g., Refs.
[1–4]). However, there has been very little work on the
development of practical control methods for minimizing
peak demand. Lee and Braun [5] developed a model-based
demand-limiting method that relies on a detailed inverse
model. The method was trained using data from the Energy
Resource Station building that houses the Iowa Energy
Center and validated experimentally by Lee and Braun [6].
The model-based demand-limiting methodology was tested
in the same building and test results showed 30%
reductions in peak cooling loads with setpoint adjustments
from 70 to 76 1F for a 5-h demand-limiting. These results
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are consistent with simulation results for this facility. The
model-based method described by Lee and Braun [5,6]
employs a detailed inverse model that requires a lot of
training data and measurements that are not typically
available for most buildings (e.g., solar radiation). There is
a need for simpler approaches.
Relatively little work has been done in developing simple

demand-limiting approaches for adjusting zone tempera-
ture setpoints that give near-optimal performance. A
simple analytic method that uses a first-order model for
the whole building was studied by Rabl and Norford [7].
Ambient temperature and solar radiation were eliminated
by taking the difference between modeling equations for
two controls, i.e. conventional and setpoint adjustment
control. Peak reduction potential was calculated for a
building with known building time constants for ‘subcool-
ing’ and ‘warm-up’ periods by assuming energy consump-
tion was constant during the on-peak period. More
recently, Braun and Lee [8] developed a simple setpoint
equation for demand-limiting from a simple indoor
79
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Nomenclature

A area
c capacitance
cg thermal contact factor
cpa specific heat of air
CC conventional control
DL demand-limiting control strategy
d effective building thickness
db,eff thickness of shallow mass ¼ rcd

gm magnitude factor in approximate equation for
radiative heat gain

gs shift factor in approximate equation for radia-
tive heat gain

gt time lag factor in approximate equation for
radiative heat gain

h convective heat transfer coefficient
kdl final time stage during the on-peak period
kt thermal conductivity
Mb;Afloor

building mass per floor area ¼ rbd

N number
NS night-setup control strategy
PC precooling control strategy
_Q heat transfer rate
_Qb rate of instantaneous heat gain to the building

air
_Qb;i;k cooling load for the ith building at time k
_Qcool;max;i is capacity of the cooling equipment for the

ith building
R thermal resistance
Ra thermal resistance between zone air and out-

door air
Rd thermal resistance between shallow mass and

deep mass
Rg thermal resistance between ground and effec-

tive entire building mass
Ri thermal resistance between zone air and effec-

tive entire building mass
Ro thermal resistance between outdoor air and

effective entire building mass
Rs thermal resistance between zone air and shal-

low mass
rc ratio of effective shallow mass capacitance to

building capacitance
rA,win,side ratio of window area to building side surface

area
T temperature
t time
tdl length of demand-limiting period
V volume of inside space of buil-

ding ¼ AfloorhtstoryNstoryVfactor
_V in volume flow rate by infiltration ¼ _V in;volumeV
_V in;volume air exchange rate by infiltration

w weighting factor

Superscripts

* optimal
n nth updated day
p predicted

Subscripts

a ambient
adj setpoint temperature adjustment in WA meth-

od
agg aggregated
avg average
b building
cc conventional control (night setup)
dl demand-limiting control
eff effective
env envelope
f final state
floor floor
g ground
g,r radiative gain
g,c convective gain
g,s solar radiative gain
i initial state
k time stage
m effective building mass
max maximum
md deep mass in simple building indoor mass

model
ms shallow mass in simple building indoor mass

model
ns night-setup control
o outside
oc occupied period
op on-peak period
pc precooling
person per person
r roof and ceiling
s shallow mass
side side wall of buildings
sp setpoint
story story of building
sur surface
v ventilation
w weighted-averaged
win window
z building zone air
1 control 1
2 control 2

Greeks

t effective time constant in simple exponential
setpoint equation

r density
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building model. In this approach, effective time constants
were determined with a trial-and-error method. Peak load
reduction was evaluated through simulation for some
representative small commercial buildings. As a fraction of
the baseline peak under conventional control, the demand
reduction ranged from about 30–100% depending on the
climate.

The current paper builds on previous work [5,6] and
develops three practical methods for determining demand-
limiting setpoint trajectories. The methods differ in terms
of implementation requirements and performance. A
detailed evaluation of the three approaches is presented
in a companion paper [9].
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Fig. 2. Schematic illustration of SA method.
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2. Demand-limiting control using building thermal mass

Fig. 1 depicts temperature setpoint changes for demand-
limiting control methods that utilize building thermal mass
during a critical peak period in the afternoon. In order to
precool the structure, building temperature setpoints are
set at a lower bound of comfort until the demand-limiting
period begins. During the demand-limiting period, the
setpoints are adjusted between lower and upper bounds of
comfort following a trajectory that minimizes the peak
load requirement. Limited test results from Lee and Braun
[6] indicate that occupant comfort is not significantly
affected when zone temperatures are maintained at 70 1F
(21.1 1C) during morning hours and then raised to 78 1F
(25.6 1C) during afternoon. Variation of the setpoints
controls the rate of heat gains from the interior surfaces
and has a profound effect on the load variation with time.
Simple methods for setpoint adjustment include ‘linear-rise
(LR)’ and ‘step-up (SU)’ trajectories that are depicted in
Fig. 1. However, these methods have been shown by Lee
and Braun [6] not to be optimal for minimizing peak
demand. In this paper, three demand-limiting methods for
estimating optimal setpoint trajectories are developed. All
three methods require short-term load data obtained from
buildings during afternoon periods that are characteristic
of periods where the demand-limiting will be applied.
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3. Demand-limiting methods

3.1. Semi-analytical (SA) method

3.1.1. Model and analysis

The SA method determines an analytical expression for
demand-limiting setpoint from a simple building model
that characterizes thermal interactions between the interior
space and a ‘‘shallow’’ interior mass. The concept of
thermal capacitance in the shallow mass was suggested and
validated with simple testing for heating and restoration of
space with concrete walls [10]. A schematic diagram of the
SA method is illustrated in Fig. 2. Actual cooling load data
under conventional control are used for estimating para-
meters associated with a simple building model. The
parameters are then used within an analytic expression
for the demand-limiting setpoint trajectory.
Fig. 3 depicts the simple interior mass building model

that is used for the SA method to describe the thermal
behavior of a building over the demand-limiting period. In
this figure, Ta is the outdoor air temperature, Tz the zone
air temperature, Cms the thermal capacitance of the shallow
mass, Rd the thermal resistance between the shallow and
deep mass, Rs the thermal resistance between the zone air
and shallow mass, Ra the resistance between the indoor air
and outdoor air, Tmd the temperature of the deep mass,
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Fig. 3. Simple indoor mass building model for SA method.
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Tms the temperature of the shallow mass, _Qg;c the
convective heat gain to the zone air from lighting,
equipment, and occupants within the interior spaces, _Qg;r

the radiative heat transfer to the shallow mass surfaces due
to internal sources and solar radiation transmitted through
windows, and _Qz is the zone sensible cooling load. The
building network model characterizes the sensible cooling
requirement assuming a deep mass temperature is nearly
constant over the relatively short demand-limiting period.
Radiative heat gain involving transmitted solar radiation
into the building space acts on the shallow mass node and
convective heat gain occurs to a zone temperature node.
Short-term coupling of the zone and outdoor air occurs
due to combined effects of conduction heat transfer within
the window and convection due to infiltration and
ventilation.

From the simple indoor mass building model, two
analytic expressions are derived: (1) the cooling load
requirement under conventional control and (2) a zone
setpoint temperature trajectory for minimizing the peak
cooling load during the demand-limiting period. The
governing differential equations for the simple indoor
building model are:

Cms
dTms

dt
¼

Tmd � Tms

Rd
þ

T z � Tms

Rs
þ _Qg;r (1)

0 ¼
Tms � T z

Rs
þ

Ta � Tz

Ra
þ _Qg;c �

_Qz for 0ptptdl. (2)

In developing the SA method, it was assumed that
during the demand-limiting period the outdoor tempera-
ture, Ta, can be expressed as a quadratic polynomial
function of time and the radiative heat gain, _Qg;r, can be
represented using a cubic polynomial variation with time.
Radiative heat gain is not directly measured and therefore
it was assumed that its time variation is related to the
variation in cooling load through a constant multiplication
Please cite this article as: Lee K-h, Braun JE. Development of methods for de

term.... Building and Environment (2007), doi:10.1016/j.buildenv.2007.11.00
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factor, gm, a constant time lag, gt, and a constant shift
factor, gs. Equations for the radiative heat gain and
outdoor temperature are given in Appendix A.
Parameters associated with Eqs. (1) and (2) are

determined using data for the building operating under
conventional control with fixed zone setpoint temperatures
during the demand-limiting period. Under these condi-
tions, the shallow mass temperature, Tms, in Eqs. (1) and
(2) is eliminated and the resulting equation is rearranged to
give a first-order differential equation for zone sensible
cooling load with fixed zone temperature, _Qz;cc (see
Appendix B). The differential equation is solved using an
initial condition of _Qz;ccð0Þ ¼

_Qz;cc;i. Appendix B gives the
development and resulting analytical expression for the
cooling load. The generic dependence of the cooling load
on time and building-specific parameters is expressed as

_Qz;ccðtÞ ¼ f ðt : Cs;Rd;Rs;Ra; gm; gt; gs;Tmd;cc; _Qg;cÞ (3)

where Tmd,cc is the deep mass temperature associated with
conventional control. The building parameters within the
cooling load Eq. (3) are estimated using non-linear
regression applied to cooling load data obtained for
demand-limiting periods where zone temperature is con-
stant. A constraint with regards to the radiative heat gain is
applied to the regression:

_Qg;rðtÞX0. (4)

In order to determine the demand-limiting setpoint
trajectory, it is assumed that a constant cooling load is
optimal for the demand-limiting period. With
_Qz ¼

_Qz;dl ¼ constant, the term Tms from Eqs. (1) and (2)
is eliminated and the resulting equation is rearranged for Tz

to yield a first-order differential equation for zone
temperature. The differential equation is solved to give
an analytical expression for zone temperature using an
initial condition of Tz,dl(0)=Tz,i (e.g., a precooling
temperature at the lower bound of acceptable comfort).
The solution is termed the ‘open-ended’ demand-limiting
setpoint equation to signify that the zone temperature
during the demand-limiting period is not constrained. The
development and resulting expression are given in Appen-
dix C, whereas the functional dependence is expressed as

Tz;dlðtÞ ¼ f ðt : Cms;Rd;Rs;Ra; gm; gt; gs;Tmd;dl; _Qg;c; _Qz;dlÞ.

(5)

A closed-ended form of the demand-limiting equation is
obtained by applying a constraint for the setpoint at the
end of the demand-limiting period (e.g., the upper limit for
acceptable comfort) such that Tz,dl(tdl) ¼ Tz,f. The applica-
tion of this constraint allows elimination of the deep mass
temperature, convective gains and demand-limiting cooling
rate. The development and resulting expression are given in
Appendix D and the functional dependence is described by

Tz;dlðtÞ ¼ f ðt : Cms;Rd;Rs;Ra; gm; gt; gsÞ. (6)

The closed-ended setpoint equation provides a simple
means for estimating a zone temperature setpoint variation
termining demand-limiting setpoint trajectories in buildings using short-
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during the demand-limiting period that results in a
constant cooling requirement and is bounded between
minimum and maximum limits of comfort.

3.1.2. Approximation of parameters

Parameters in the analytical Eq. (3) for cooling load
under conventional control are estimated using non-linear
regression with actual data. There are two phases
associated with the parameter estimation process as
described by Chaturvedi and Braun [11]: global search
and local search. The global search uses a systematic search
to determine reasonable values of the parameters within
bounds determined from a crude building description. The
local search uses a local non-linear regression method to
further improve the parameter estimates by minimizing the
root-mean-squared error between measured and calculated
cooling loads for the training duration. The combination of
a local and a global phase provides a robust algorithm for
determining parameters and only requires minimal pre-
liminary building information.

For the global search phase, building geometry and
thermal properties of air and building materials are used to
determine lower and upper bounds of thermal parameters:
the shallow mass thermal capacitance Cms and thermal
resistances Rd, Rs, and Ra. Bounds on the geometry and
property parameters are estimated from knowledge of the
building. A companion paper [9] provides example bounds
for building geometry and property parameters used for a
number of different case studies. Equations for converting
these parameters to parameters used in Eq. (3) are
presented below.

To determine bounds, the shallow mass thermal
capacitance can be estimated from:

Cms ¼ rcMb;Afloor
Afloorcb (7)

where Afloor is the floor area (m2), Mb;Afloor
the building

mass per unit of floor area (kg/m2) ¼ rsd, rs the density of
building material in close contact with the indoor space
(kg/m3), d the effective building thickness (m), cb the
specific heat of building envelope (J/kgK), and rc is the
ratio of effective shallow mass capacitance to building
capacitance.

Thermal resistance between the deep mass and shallow
mass is approximated as:

Rd ¼
db;eff

kbAsur;ms
(8)

where db,eff is the thickness of shallow mass ¼ rcd (m), d the
effective building thickness (m), kb the thermal conductiv-
ity of building envelope shallow mass (W/mK),
Asur,ms ¼ Asur,env the surface area of shallow mass,
Asur,env ¼ Aside+Afloor+Aroof the envelope surface area,
Aside ¼ 4½

ffiffiffiffiffiffiffiffiffiffiffi
Afloor

p
htstoryNstoryð1� rA;win;sideÞ� the surface area

of four sides of an effective building having a square shape,
Nstory the number of building stories, htstory the building
height per story (m), rA,win,side the ratio of window area to
building side surface area, Aroof ¼ Afloor(1�rA,win,roof) the
Please cite this article as: Lee K-h, Braun JE. Development of methods for de

term.... Building and Environment (2007), doi:10.1016/j.buildenv.2007.11.00
D P
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surface area of roof, and rA,win,roof is the ratio of window to
building roof area.
The thermal resistance between the shallow mass and

zone air is approximated as:

Rs ¼
1

hiAsur;ms
(9)

where hi is the inside convection coefficient (W/m2K).
The thermal resistance between the zone air and outdoor

air is approximated as:

1

Ra
¼

1

Rwin
þ

1

Rvent
(10)

Rwin ¼
1

hiAwin
þ

dwin

kwinAwin
þ

1

hoAwin
(11)

Rvent ¼
1

racpað _Vvent þ _V inÞ
(12)

where Awin ¼ 4ð
ffiffiffiffiffiffiffiffiffiffiffi
Afloor

p
htstoryNstoryrA;win;sideÞ þ

AfloorrA;win;roof is the surface area of windows, dwin the
window thickness (m), ho the outside convection coefficient
(W/m2K), kwin the window thermal conductivity (W/mK),
cpa the specific heat of air (J/kgK), ra the density of air (kg/
m3), _V vent;person the required ventilation flow rate per
person (m3/h-person), Nperson,floor the people number per
floor area, _V in;volume the air exchange rate by infiltration (1/
h), _Vvent ¼ _Vvent;personNperson;floorNstory the ventilation flow
rate into/out of building (m3/h), V the volume of inside
space of building ¼ AfloorhtstoryNstoryVfactor (m3), and
_V in ¼ _V in;volumeV is the volume flow rate by infiltration
(m3/h).
Upper and lower bounds for heat gains and deep mass

temperature within Eq. (3) also need to be specified. An
upper bound for the internal convective gain is set as the
minimum cooling load that occurs for night-setup control
during the demand-limiting period. A lower bound is set as
some reasonable fraction of the upper bound (e.g., 50%).
The deep mass temperature is assumed to be between the
zone setpoint temperature for night-setup control and the
highest outdoor temperature.
Bounds for the three factors in the radiative heat gain

Eq. (A.2) in Appendix A can be set based on a physical
understanding. For example, the multiplication factor
should have a value that is somewhat smaller or greater
than one since the maximum solar radiation may be lower
or higher than the highest cooling load during the on-peak
period. The time lag between cooling load and internal
radiation is typically about 1–2 h. The shifting factor has
the same order of magnitude as the cooling load but can be
either negative or positive.
termining demand-limiting setpoint trajectories in buildings using short-
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Fig. 5. Simple whole building model for ESA method.
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3.2. Exponential setpoint equation-based semi-analytical

(ESA) method

3.2.1. Model and analysis

A simple exponential equation for demand-limiting
control was derived by Braun and Lee [8] assuming that
all driving input conditions are constant during the
demand-limiting period.

Tz;dl � T z;i

T z;f � T z;i
¼

1� expð�t=teff Þ
1� expð�tdl=teff Þ

(13)

where Tz,dl is the setpoint temperature, Tz,i the initial
temperature at the start of demand-limiting period (e.g.,
70 1F (21.1 1C)), Tz,f the temperature at the end of the
demand-limiting period (e.g., 78 1F (25.6 1C)), t the time
measured from the start of the demand-limiting period, tdl
the length of the demand-limiting period, and teff is an
effective time constant for the setpoint trajectory. This
simple exponential was shown by Braun and Lee [8] to be
very effective in peak demand reduction with a proper
effective time constant. It is important to note that the
effective time constant is not a physical characteristic of the
building. Rather, it is a parameter that controls the shape
of the setpoint trajectory during the demand-limiting
period. Simulation results presented by Braun and Lee [8]
were obtained for several prototype buildings by estimating
effective time constants for peak demand reduction using a
trial-and-error method. However, it is desirable to have a
general methodology for estimating effective time con-
stants that minimize peak demand using short-term
measurements.

The ESA method produces an effective time constant for
Eq. (13) that can be used for demand-limiting control, teff,dl
and is illustrated in Fig. 4. The method requires cooling
load data for two different control strategies implemented
on two different days, _Qact;1 and _Qact;2. The subscripts 1
and 2 indicate two different controls (‘control 1’ and
‘control 2’) for the two different days. One of the strategies
UNCOR

Load data:

Equa

E

Param

J = m

Actual

building

ΔQact ,1-2 = Qact ,1 - Qact ,2
ΔQ

ΔQzQ1, act

Q2, act

Additional load data:

E

M

Fig. 4. Overview o
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should be conventional control and the other a simple
demand-limiting strategy, such as a ‘linear-rise’ setpoint
strategy. An equation for cooling load difference, D _Qz;1�2,
can be obtained analytically from a simple building model.
Two sets of load differences, D _Qact;1�2 from actual
measured data and D _Qz;1�2 from analytic equations, are
compared and used to estimate parameters for a simple
building model as depicted in Fig. 4. The parameters are
then used to find an effective time constant teff,dl that
minimizes peak demand ( _Qz;dl in Fig. 4). More details of
the method follow in this section.
The parameter estimation is applied to a simple whole

building mass model that is depicted in Fig. 5. In this
representation, the building mass node is at a temperature
of Tm and characterizes the entire effective building mass.
Solar radiation, _Qg;s and internal radiative heat gain, _Qg;r,
both act on the building mass node. The building mass is
also coupled directly to the outdoor air, zone air, and
ground. A massless zone air node is connected to the
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 ,1-dl = Qz ,1 - Qz , dl

quation (18):

inimize

�eff ,dl

f ESA method.
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Fig. 6. Two phases in ESA method.
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building mass node and outdoor air. The zone air coupling
to the outdoor air represents the thermal resistance
through windows and convection resulting from infiltra-
tion and ventilation. There is also convective heat gain to
the zone air from lighting, equipment, and occupants
within the interior spaces.

The governing differential equations for this simple
whole building model can be written as:

Cm
dTm

dt
¼

Ta � Tm

Ro
þ

Tg � Tm

Rg
þ

T z � Tm

Ri
þ _Qg;s þ

_Qg;r

(14)

0 ¼
Tm � Tz

Ri
þ

Ta � T z

Ra
þ _Qg;c �

_Qz 0otptdl (15)

where Cm is the thermal capacitance of the effective
building mass, Ro the thermal resistance between the
outdoor air and effective building mass, Ri the thermal
resistance between the zone air and effective building mass,
Ra the thermal resistance between indoor air and outdoor
air, Tm the temperature of the effective building mass, Ta

the temperature of the outdoor air, _Qg;c the convective heat
gain to the zone air, _Qg;s the solar radiation on the exterior
building walls, _Qg;r the radiative heat transfer to interior
building mass surfaces due to internal sources and solar
transmitted through windows, and _Qz is the zone sensible
cooling load. Eq. (13) arises from the solution to these
differential equations with an assumption of constant
driving conditions.

In applying the ESA method, it is assumed that all
driving conditions, including outdoor temperature, solar
radiation, radiative heat gain, and internal convective heat
gain, are similar for different afternoon days where
demand-limiting would be applied. This assumption
eliminates the need to have measurements of actual driving
conditions in determining the effective time constant for
demand-limiting control. Now consider two different
control strategies that employ setpoint trajectories pro-
duced with Eq. (13) for time constants teff,1 and teff,2. Eqs.
(14) and (15) apply for each strategy and a set of equations
involving differences in state variables are obtained as

Cm
dðDTmÞ

dt
¼

DTa � DTm

Ro
�

DTg

Rg
þ

DT z � DTm

Ri
(16)

0 ¼
DTm � DT z

Ri
þ

DTa � DTz

Ra
� D _Qz (17)

where DTm=Tm,1�Tm,2, DTz=Tz,1�Tz,2, DTa=Ta,1�Ta,2,
and D _Qz ¼

_Qz;1 �
_Qz;2. The terms involving solar radiation

and radiative/convective heat gain have been eliminated.
An equation for the outdoor temperature difference is
given in Appendix E.

The DTm term in Eqs. (16) and (17) can also be
eliminated by combining these equations and then the
result can be rearranged to give a first-order differential
equation for cooling load difference, D _Qz. Finally, this
differential equation can be solved with an initial condition
Please cite this article as: Lee K-h, Braun JE. Development of methods for de

term.... Building and Environment (2007), doi:10.1016/j.buildenv.2007.11.00
D P
ROof D _Qzð0Þ ¼

_Qz;1ð0Þ �
_Qz;2ð0Þ. The development and result-

ing expression are given in Appendix E and the functional
dependence can be expressed as

D _QzðtÞ ¼ f ðt : teff ;1; teff ;2;Cm;Ro;Ri;Ra;RgÞ (18)

As depicted in Fig. 6, the ESA method involves two
phases: building model parameter estimation and time
constant estimation. The graphs in this figure represent
setpoint temperature variations during occupied periods
including precooling and demand-limiting periods. In the
parameter estimation phase, the parameters of Eq. (18) are
estimated using non-linear regression with cooling load
difference data for two days having two different control
strategies (e.g., conventional control (CC) and precooling
with a linear-rise demand-limiting strategy (PC+linear-
rise)). Appendix E gives a special-case expression for load
difference when one of the strategies is conventional
control with Tz set to a constant Tz,cc. If the second
strategy involves a linear-rise in setpoint with control 2,
then the time constant teff,2 should be set to an artificially
large number.
In the time constant estimation phase, one of the two

training strategies (either CC or PC+linear-rise) is utilized
along with Eq. (18) to determine an effective time constant
for a strategy that would minimize the peak cooling load
(PC+DL) for a day having similar driving variables. The
optimization involves minimizing the following cost func-
tion over the demand-limiting period with respect to teff,2.

J ¼ maxð _Qz;2ðt; teff ;2ÞÞ ¼ maxð _Qz;1ðtÞ � D _Qzðt; teff ;2ÞÞ for 0otptdl

(19)

where teff,2 is the effective constant for the demand-limiting
strategy (PC+DL in Fig. 6) teff,dl, _Qz;1 is measured load for
the training strategy (‘control 1’ in Fig. 6), and D _Qz is
determined using Eq. (18). The value of J (maximum of
termining demand-limiting setpoint trajectories in buildings using short-
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_Qz;2) that results from this optimization is a prediction of
the peak cooling demand under demand-limiting control
when the ESA method is applied.

3.2.2. Approximation of thermal parameters

Thermal parameters in the analytical equation for
cooling load difference (18) are estimated using non-linear
regression with actual load difference data. The parameters
are determined using the two-phase search process
described for the SA approach that involves a global
search and a local search. For the global search phase,
bounds for the thermal capacitance of the effective building
mass (Cm) and thermal resistances (Ri, Ro, Rg, and Ra) are
determined from estimates of bounds for the building
geometry and thermal properties of air and building
materials as described for the SA method. A companion
paper [9] provides example bounds for building geometry
and property parameters used for a number of different
case studies.

For determining bounds, the effective whole building
mass thermal capacitance is approximated as:

Cm ¼Mb;Afloor
Afloorcb (20)

where Afloor is the floor area (m
2), Mb;Afoor

the building mass
per floor area (kg/m2) ¼ rbd, rb the density of the building
mass (kg/m3), d the effective building thickness (m), and cb
is the specific heat of the building envelope (J/kgK).

Thermal resistance between the effective whole building
mass and outdoor air is approximated as:

Ro ¼
1

hoAo
(21)

where ho is the outside convection coefficient (J/hm2K)
and Ao is the outside surface area (m2).

Thermal resistance between the effective whole building
mass and zone air is approximated as:

Ri ¼
1

hiAsur;ms
(22)

where hi is the inside convection coefficient (W/m2K).
Thermal resistance between the zone air and outdoor air

is determined using Eqs. (10), (11), and (12). Thermal
resistance between the ground and effective building mass
UNC

L
o

a
d

Control 1

Control 2

On-peak time

Weight-averaged

Fig. 7. Schematic illustration of WA meth
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is assumed to be:

Rg ¼
cg

Asur;ms
(23)

where cg is thermal contact factor.

3.3. Load weighted-averaging (WA) method

3.3.1. Basic WA method

With the WA method, the setpoint trajectory that
minimizes the peak cooling load is estimated through a
WA of two control setpoint trajectories as depicted in Fig.
7(b). The two setpoint trajectories should produce load
variations that intersect at some point during the demand-
limiting period as shown in Fig. 7(a). The weighting factor
is determined by minimizing the peak of the weight-
averaged cooling loads. The optimization problem involves
minimizing the following objective function

J ¼ max
wn
½w _Q1;k þ ð1� wÞ _Q2;k� ¼ max

wn
½ _Qw;k� for 0otptdl

(24)

with respect to the weighting factor w, where _Q1;k is the
cooling load for time interval k under control 1, _Q2;k is the
cooling load at time k under control 2, and _Qw;k is the
weighted-averaged cooling load at time k.
The WA method employs the assumption that the

cooling load at any time is a linear function of the zone
temperature. With this assumption, the zone temperature
trajectory that minimizes the peak load is

T z;w;k ¼ wnT z;1;k þ ð1� wnÞTz;2;k for 0otptdl (25)

where Tz,1,k is the zone setpoint temperature for time
interval k with control 1, Tz,2,k the zone setpoint
temperature for control 2 at time k, and Tz,w,k is the
optimally weighted-averaged zone setpoint temperature at
time k, and w� is the optimal weighting factor determined
by minimizing the cost function in Eq. (24).
The example depicted in Fig. 7 shows a ‘linear-rise’

setpoint variation that results in a decreasing cooling load
over the demand-limiting period and a ‘step-up’ setpoint
that causes an increasing cooling load. Both setpoint
variations have precooling prior to the on-peak time
period. The optimal weighting factor determines the WA
101
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of these two load profiles that would minimize the peak
load. When this weighting factor is applied to zone
temperature profiles, a new setpoint trajectory is estimated
that is between the two original setpoint trajectories.

Eq. (25) assumes linearity and only employs a single
weighting constant to adjust the setpoint trajectory.
Therefore, it may produce a cooling load variation that is
not flat. In order to improve the shape of the cooling load
profile, the setpoints for individual hours within the
demand-limiting are adjusted using a local weighting
scheme. The adjustment process also employs the assump-
tion of a linear variation of cooling load with zone
temperature variation at any time during the demand-
limiting period. The adjustment uses the weighted-averaged
setpoint trajectory and weighted-averaged load profile to
estimate a trajectory that would produce a flat load equal
to the average of the weighted-averaged loads. The setpoint
trajectory of Eq. (25) that is obtained from the WA is
adjusted using the following equation.

T z;dl;k ¼ T z;w;k þ DTadj;k (26)

DTadj;k ¼
_Qw;k �

_Qw;avg

max j _Qw;k �
_Qw;avgj

Tadj;max (27)

where _Qw;k is the weighted-averaged cooling load using
_Q1;k and _Q2;k at time k, Tadj,max the maximum allowable
adjustment temperature for a given hour (e.g., 0.5 or 1.0 1F
(0.28 or 0.56 1C)), and _Qw;avg is the average of the weighted-
averaged cooling load _Qw;k over the demand-limiting
period. The algorithm tends to produce a flat cooling load
profile that minimizes differences between the hourly and
averaged loads over the demand-limiting period.

In the WA method, two initial days with upper and
lower bound load data are assumed to have similar weather
conditions. To compensate for different weather condi-
tions, cooling load data are normalized by dividing by the
initial cooling load at the start of the demand-limiting
period before the method is applied.
 R
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UNCOR3.3.2. Updating WA method

The setpoint trajectory from the basic WA method can
be updated on a daily basis so as to improve the shape of
the cooling load and respond to changing conditions. The
updating process uses the concept of phase cancellation of
two functions which are 1801 out of phase with each other.
Phase cancellation is used primarily in the theory of wave
superposition and is sometimes termed destructive inter-
ference [12]. If two sets of load data are 1801 out of phase,
then the optimal weighting factor can be updated perfectly.
If a measured load profile for the demand-limiting period is
not perfectly flat, then the setpoint trajectory is adjusted to
obtain a 1801 out-of-phase load profile for phase cancella-
tion. The updating strategy involves using the setpoint
trajectory and measured load profile for the most recent
demand-limiting period to estimate a trajectory that would
produce a 1801 out-of-phase load. This trajectory is then
Please cite this article as: Lee K-h, Braun JE. Development of methods for de

term.... Building and Environment (2007), doi:10.1016/j.buildenv.2007.11.00
D P
ROOF

implemented and cooling loads are measured. Then, the
WA approach is applied to the load data from these two
days to determine the new updated demand-limiting
trajectory. This process is continually applied for de-
mand-limiting days.
The setpoint trajectory is updated using sequences of two

days. First, the basic WA method is applied to determine a
setpoint trajectory. On the first day of each updating two-
day sequence, the setpoint trajectory is adjusted from the
previous days’ setpoint trajectory using phase cancellation
with a locally linear assumption in a manner very similar to
that presented for the basic WA method. The hourly
adjustments for phase cancellation are determined on odd
days within the updating process as:

Tn
z;2;k ¼ Tn�1

z;1;k þ DTn
adj;k ðn ¼ 1; 3; 5; . . .Þ (28)

where

DTn
adj;k ¼

_Q
n�1

1;k �
_Q

n�1

1;avg

max j _Q
n�1

1;k �
_Q

n�1

1;avgj
Tn

adj;max, (29)

Tn
adj;max ¼

maxf _Q
n�1

1;k g �
_Q

n�1

1;avg

maxf _Q
0

1;kg �
_Q
0

1;avg

Tadj;max, (30)

and where n is an index representing the day after the start
of the updating process, Tadj,max the maximum allowable
adjustment temperature (e.g., 0.5 or 1.0 1F (0.28 or
0.56 1C)), and Tn

adj;max is a maximum allowable adjustment
temperature for the demand-limiting period on the nth day
of updating.
The difference between the hourly adjustment scheme of

the updating and basic WA methods is that the maximum
allowable adjustment, Tn

adj;max varies according to the
deviation of the hourly and daily average loads. This tends
to dampen the fluctuations in the setpoint trajectory as the
load profile approaches the optimum. The determination of
the setpoint trajectory for n ¼ 1 requires use of the setpoint
trajectory determined with the basic WA method, T0

z;1;k

( ¼ Tz,w,k in the basic WA method), and the loads that
result from implementation of this trajectory, _Q

0

z;1;k. The
load profile from the basic WA method is also used as a
normalization factor in determining a maximum tempera-
ture adjustment for each hour within the phase cancellation
procedure.
On the second day of each updating two-day sequence,

the setpoint trajectory is adjusted from the previous days’
setpoint trajectory using WA for the last two demand-
limiting days. For each hour within the demand-limiting
period on even days within the updating process, the
setpoint temperature is determined as a weighted average
of the setpoints for the same hour on the previous two
demand-limiting days according to

Tn
z;1;k ¼ wn

nTn�2
z;1;k þ ð1� wn

nÞT
n�1
z;2;k ðn ¼ 2; 4; 6; . . .Þ (31)

where w�n is the optimal weighting factor determined for the
nth day of updating by minimizing the following objective
termining demand-limiting setpoint trajectories in buildings using short-
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function.

Jn ¼ max
wn

n

½wn
_Q

n�2

1;k þ ð1� wnÞ _Q
n�1

2;k � ðn ¼ 2; 4; 6; . . .Þ (32)

The setpoint trajectory can be continually updated using
these two-day sequences of load phase cancellation and
WA.

3.4. Application of WA method for building aggregates

Load aggregation for peak demand reduction has some
benefits compared to individual building load control such
as improvement of load factors1, possibility of smaller
demand charges, and simpler implementation of demand
control [14]. Model-based controls require building re-
sponse models for all of the aggregated buildings to
determine optimal setpoint trajectories of each building or
a single optimal setpoint trajectory to minimize peak
demand of aggregated building loads. Even if a single
equivalent model is considered for response modeling of
aggregated buildings, it would be quite difficult to obtain
feasible parameters for the aggregated building model.

The WA method is a data-based approach that requires
no model and can be applied to an aggregated building
application if the linearity assumption is valid. The WA
method can be adapted to determine a single setpoint
trajectory to minimize peak demand of aggregated building
loads.

3.4.1. Demand-limiting problem for aggregated building

loads

Demand-limiting control for building aggregates is
treated as an optimization problem for determining a
single setpoint trajectory that minimizes the peak demand
of aggregated total cooling demands while maintaining
zone temperatures within the comfort temperature range
for all of the buildings. The problem involves minimization
of the following cost function:

J ¼ max
XNb

i¼1

_Qb;i;k

( )
for the demand�limiting period (33)

with respect to Tz,k subject to Tz,ipTz,kpTz,f and
0p _Qb;i;kp _Qcool;max;i where _Qb;i;k is cooling load for the
ith building at time k, _Qcool;max;i is capacity of the cooling
equipment for the ith building and Nb is the number of
buildings.

3.4.2. WA method for building aggregates

If the same cooling setpoint is used for all of the
buildings in the building aggregate, then aggregated
cooling loads can be expressed as a function of the single
setpoint.
111

113

1The load factor was defined as ‘‘the ratio of average demand in kW

divided by the maximum demand in kW. The average demand is

calculated as the ratio of monthly energy use in kWh divided by the

number of hours in the month ([13])’’.
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_Qagg;kðT z;kÞ ¼
XNb

i¼1

_Qi;kðT z;kÞ

( )
(34)

where _Qagg;kðTz;kÞ is the total sum of cooling loads at time k

for building aggregates as a function of zone setpoint
temperature Tz,k. The zone setpoint temperature can be
expressed as a sum of two arbitrary setpoint temperatures
Tz,a,k and Tz,b,k with arbitrary constants a and b.

Tz;k ¼ aTz;a;k þ bT z;b;k. (35)

If an individual cooling load at any time is a linear
function of the zone temperature, then it can be written as:

_Qi;kðaT z;a;k þ bTz;b;kÞ ¼ a _Qi;kðT z;a;kÞ þ b _Qi;kðTz;b;kÞ (36)

If we substitute Eq. (35) into (34), then

_Qagg;kðT z;kÞ ¼
XNb

i¼1

_Qi;kðaT z;a;k þ bT z;b;kÞ

( )

¼ a
XNb

i¼1

_Qi;kðT z;a;kÞ þ b
XNb

i¼1

_Qi;kðTz;b;kÞ ð37Þ

Eq. (37) can be rewritten as:

_Qagg;kðaT z;a;k þ bTz;b;kÞ ¼ a _Qagg;kðT z;a;kÞ þ b _Qagg;kðTz;b;kÞ.

(38)

From Eq. (38), it is obvious that the sum of cooling loads
is also a linear function of zone temperature if individual
cooling loads are linear with zone temperature. There is no
loss of generality to replace a and b with w and 1�w,
respectively. Based on this linearity assumption for the
aggregated cooling load, the WA in the WA method can be
applied to building aggregates to find a single setpoint
trajectory that minimizes the peak aggregated cooling load.
The weighting factor is determined by minimizing the peak
of the weight-averaged cooling loads for building aggre-
gates. The optimization problem involves minimizing the
following objective function

J ¼ max
wn

w
XNb

i¼1

_Q1;i;k þ ð1� wÞ
XNb

i¼1

_Q2;i;k

( )
for all k in the

demand�limiting period ð39Þ

with respect to the weighting factor w, where _Q1;i;k is the
cooling load of the ith building for time interval k under
control 1 and _Q2;i;k is the cooling load of ith building at
time k under control 2. With the linearity assumption, the
zone temperature trajectory that minimizes the aggregated
peak load is

Tz;w;k ¼ w�Tz;1;k þ ð1� w�ÞT z;2;k for the demand�limiting

period ð40Þ

where Tz,1,k is the zone setpoint temperature for time
interval k with control 1, Tz,2,k the setpoint temperature for
control 2 at time k, Tz,w,k is the optimal zone setpoint
temperature at time k, and w� is the optimal weighting
factor determined by minimizing the cost function in Eq.
(39). The weighted-averaged setpoint trajectory Tz,w,k is
termining demand-limiting setpoint trajectories in buildings using short-
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adjusted using Eqs. (26) and (27). The same method for the
updating of the setpoint trajectory used for the individual
building approach is used for application to building
aggregates.
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4. Summary

In this paper, practical methods that use short-term
measurement data for determining demand-limiting con-
trol setpoint trajectories are described. Three demand-
limiting methods, termed SA, ESA (ESA-based SA), and
WA, have been developed that have different data
requirements. Each method yields an estimate of a
building-specific setpoint trajectory that gives a ‘‘flat’’
cooling load profile during a specified demand-limiting
period and requires short-term measurements for training.

Both the SA and ESA methods use analytical equations
obtained from simple building models and use test data for
parameter estimation, while the WA method uses WA of
load data. The SA method requires the least data and a
strategy can be determined with one day of load data for
conventional control. The ESA method requires one
additional day of test data compared to the SA method.
The WA method requires two test days with setpoint
trajectories that bound the optimal solution. Application of
the WA method for building aggregates was also presented
that uses a single demand-limiting setpoint trajectory to
minimize peak demand of aggregated building loads.

A companion paper by Lee and Braun [9] evaluates the
performance of these three methods in terms peak load
reduction potential for a number of different case studies.
The methods require less field data and few inputs than
previous methods [5,6] and are very effective in terms of
peak demand reduction.
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UNCORREAppendix A. Approximation of radiative heat gain and

outdoor temperature

For characterizing the radiative gain profile, cooling
load data under conventional control is expressed in the
form of cubic polynomials as:

_Qz ¼ q0 þ q1tþ q2t
2 þ q3t

3. (A.1)

Coefficients in the polynomial equation are obtained
using regression of actual load data. It is assumed that the
radiative heat gain has a similar shape as the cooling load
and can be expressed as a cubic polynomial. The radiative
heat gain is assumed to be related to the cooling load data
through three parameters: a multiplication factor gm, a
constant time lag gt, and a constant shift factor gs.

_Qg;r ¼ g0 þ g1tþ g2t
2 þ g3t

3

¼ gm½q0 þ q1ðtþ gtÞ þ q2ðtþ gtÞ
2
þ q3ðtþ gtÞ

3
� þ gs

ðA:2Þ

Then, the coefficients of g0, g1, g2, and g3 are written as
Please cite this article as: Lee K-h, Braun JE. Development of methods for de
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g0 ¼ gs þ gmðq0 þ gtq1 þ g2
t q2 þ g3

t q3Þ (A.3)

g1 ¼ gmðq1 þ 2gtq2 þ 3g2
t q3Þ (A.4)

g2 ¼ gmðq2 þ 3gtq3Þ and g3 ¼ gmðq3Þ. (A.5)

The outdoor temperature variation for the demand-
limiting period is expressed as a quadratic polynomial
equation. Coefficients in the polynomial equation are
obtained using regression of actual outdoor temperature
data.

TaðtÞ ¼ Ta0 þ Ta1tþ Ta2t2 (A.6)

Appendix B. Cooling load equation

The differential equation for cooling load under
conventional control is

d _QzðtÞ

dt
¼ �

1

A1

_QzðtÞ þ
1

A2

dTaðtÞ

dt
þ

1

A3
TaðtÞ þ

1

A4

_Qg;rðtÞ þ Kcc

(B.1)

where

Kcc ¼
1

CmsRs

Tmd

Rd
þ

T z;cc

Rs
� 1þ

Rs

Ra

� �
1

Rd
þ

1

Rs

� �
Tz;cc

�

þ Rs
1

Rd
þ

1

Rs

� �
_Qg;c

�
;
1

A1
¼

1

RdCms
þ

1

RsCms
;
1

A2

¼
1

Ra
;
1

A3
¼

1

Ra

1

RdCms
þ

1

RsCms

� �
,

and

1

A4
¼

1

RsCms
.

The solution of the differential equation for cooling load
under conventional control with an initial condition me
_Qz;ccð0Þ ¼

_Qz;cc;i is

_Qz;ccðtÞ ¼
_Qz;cc;i exp �

t

A1

� �
þ

1

2
F1 1� exp �

t

A1

� �� �
þ F2t3 þ F 3t

2 þ F4t ðB:2Þ

where

F1 ¼
1

A2A3A4
½ð2A1A2A4ÞTa0 þ 2ðA1A3A4 � A2A4A2

1ÞTa1

þ 4ðA2A4A
3
1 � A3A4A2

1ÞTa2 þ 2ðA1A2A3Þg0

� 2ðA2A3A
2
1Þg1 þ 4ðA2A3A

3
1Þg2 � 12ðA2A3A4

1Þg3

þ 2ðA1A2A3A4ÞKdl�,

F2 ¼
A1

A4
g3,

F3 ¼
1

A2A3A4
½ðA1A2A3Þg2 � 3ðA2

1A2A3Þg3 þ ðA1A2A4ÞTa2�,
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F4 ¼
1

A2A3A4
½ðA1A2A4ÞTa1 þ 2ðA1A3A4 � A2

1A2A4ÞTa2

þ ðA1A2A3Þg1 � 2ðA2
1A2A3Þg2 þ 6ðA3

1A2A3Þg3�
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Appendix C. Open-ended demand-limiting setpoint equation

The differential equation for the setpoint temperature
under demand-limiting control is

dT zðtÞ

dt
¼ �

1

B1
T zðtÞ þ

1

B2

dTaðtÞ

dt
þ

1

B3
TaðtÞ þ

1

B4

_Qg;rðtÞ þ Kdl

(C.1)

where

Kdl ¼
Ra

CmsðRa þ RsÞ

Tmd;dl

Rd
� Rs

1

Rd
þ

1

Rs

� �
ð _Qz;dl �

_Qg;cÞ

� �
,

1

B1
¼

1

RdCms
þ

1

ðRa þ RsÞCms
,

1

B2
¼

Rs

Ra þ Rs
,

1

B3
¼

Rs

Ra þ Rs

1

RdCms
þ

1

RsCms

� �
,

and

1

B4
¼

1

Cms

Ra

Ra þ Rs

� �
.

Solution of the differential equation for the demand-
limiting setpoint temperature with an initial condition
Tz,dl(0)=Tz,i is

Tz;dlðtÞ ¼ Tz;i exp �
t

B1

� �
þ

1

2
F 1 1� exp �

t

B1

� �� �
þ F 2t

3 þ F3t2 þ F4t ðC:2Þ

where

F1 ¼
1

B2B3B4
½ð2B1B2B4ÞTa0 þ 2ðB1B3B4 � B2B4B2

1ÞTa1

þ 4ðB2B4B3
1 � B3B4B2

1ÞTa2 þ 2ðB1B2B3Þg0

� 2ðB2B3B2
1Þg1 þ 4ðB2B3B3

1Þg2 � 12ðB2B3B4
1Þg3

þ 2ðB1B2B3B4ÞKdl�,

F2 ¼
B1

B4
g3,

F3 ¼
1

B2B3B4
½ðB1B2B3Þg2 � 3ðB2

1B2B3Þg3 þ ðB1B2B4ÞTa2�,

and
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F4 ¼
1

B2B3B4
½ðB1B2B4ÞTa1 þ 2ðB1B3B4 � B2

1B2B4ÞTa2

þ ðB1B2B3Þg1 � 2ðB2
1B2B3Þg2 þ 6ðB3

1B2B3Þg3�.

Appendix D. Closed-ended demand-limiting setpoint

equation

A closed-ended form of the demand-limiting equation is
obtained by applying a constraint for the setpoint at the
end of the demand-limiting period (e.g., the upper limit for
acceptable comfort) such that Tz,dl(tdl)=Tz,f. The applica-
tion of this constraint allows elimination of the deep mass
temperature Tmd,dl, convective gains _Qg;c and demand-
limiting cooling rate _Qz;dl. If the final condition
Tz,dl(tdl)=Tz,f is applied to the open-ended demand-limit-
ing setpoint equation and the equation is re-arranged, then
the following setpoint Eq. (D.1) can be obtained. It is
termed the closed-ended form of the demand-limiting
setpoint equation. It should be noted that the variable F1,
which includes the terms Ta0, g0, Tmd,dl, _Qz;dl, and

_Qg;c,
does not appear in this equation.

Tz;dlðtÞ � T z;i

T z;f � T z;i
¼

1� expð�t=B1Þ

1� expð�tdl=B1Þ
þ

F4

T z;f � T z;i

� t� tdl
1� expð�t=B1Þ

1� expð�tdl=B1Þ

� �
þ

F3

T z;f � T z;i

� t2 � t2dl
1� expð�t=B1Þ

1� expð�tdl=B1Þ

� �
þ

F 2

Tz;f � Tz;i

� t3 � t3dl
1� expð�t=B1Þ

1� expð�tdl=B1Þ

� �
ðD:1Þ

Appendix E. Equations of outdoor temperature difference

and load difference

Outdoor temperature difference terms for the two days
corresponding to the control 1 and control 2 can be
expressed as quadratic polynomial equations.

DTa ¼ ðTa1;0 þ Ta1;1tþ Ta1;2t
2Þ � ðTa2;0 þ Ta2;1tþ Ta2;2t

2Þ

¼ ðTa1;0 � Ta2;0Þ þ ðTa1;1 � Ta2;1Þtþ ðTa1;2 � Ta2;2Þt
2

¼ DTa0 þ DTa1tþ DTa2t2 ðE:1Þ

where Ta1,0, Ta1,1, and Ta1,2 are coefficients of the outdoor
temperature equation for the ‘control 1’ day, and Ta2,0,
Ta2,1, and Ta2,2 are coefficients of the outdoor temperature
equation for the ‘control 2’ day.
The governing differential equation between load

difference resulting from application of two different
control strategies, ‘control 1’ and ‘control 2’, is

dðD _QzÞ

dt
¼ � A1ðD _QzÞ þ A2ðDTzÞ � A3

dðDTzÞ

dt

þ A4ðDTaÞ þ A5
dðDTaÞ

dt
ðE:2Þ

where
termining demand-limiting setpoint trajectories in buildings using short-
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A1 ¼
1

Cm

1

Ro
þ

1

Ri
þ

1

Rg

� �
,

A2 ¼
1

CmRi

1

Ri
�

1

Ro
þ

1

Ri
þ

1

Rg

� �
Ra þ Ri

Ra

� �� �
,

A3 ¼
Ra þ Ri

RaRi
,

A4 ¼
1

CmRi

1

Ro
þ

1

Ro
þ

1

Ri
þ

1

Rg

� �
Ri

Ra

� �� �
,

and

A5 ¼
1

Ra
.

For the zone temperature difference DTz term, two
special cases are considered according to the zone
temperature setpoint for the control 1 day. The first case
is when control 1 is the conventional control with a
constant zone temperature.

DT z ¼ Tz;cc �
1� e�t=t2

1� e�tdl=t2

� �
ðT z;2;f � Tz;2;iÞ þ T z;2;i (E.3)

where Tz,cc is constant zone temperature in conventional
control for ‘control 1’, t2 the time constant in the simple
exponential equation for ‘control 2’, Tz,2,f the higher bound
temperature for ‘control 2’ during the demand-limiting
period, and Tz,2,i is the lower bound temperature for
‘control 2’ during the demand-limiting period. The second
case is for when the building is precooled and the demand-
limiting setpoint temperature follows the simple exponen-
tial Eq. (13) for both ‘control 1’ and ‘control 2’.

DT z ¼
1� e�t=t1

1� e�tdl=t1

� �
ðT z;1;f � Tz;1;iÞ þ T z;1;i

� �

�
1� e�t=t2

1� e�tdl=t2

� �
ðT z;2;f � Tz;2;iÞ þ Tz;2;i

� �
ðE:4Þ

The solution of Eq. (E.2) can be expressed in different
forms according to the condition of the zone temperature
difference term DTz. Firstly, the solution with an initial
condition D _Qzð0Þ ¼ D _Qz;i and zone temperature difference
term of (E.3) is

D _QzðtÞ ¼ D _Qz;i expð�A1tÞ þ B1 þ B2

þ
B3 þ B4 þ B5ðA1t2 � 1Þ

B6
ðE:5Þ

where

B1 ¼
e�A1tðA4DTa1 þ 2A5DTa2Þ � 2DTa2ðA4tþ A5Þ � A4DTa1

A2
1

,

B2 ¼
ðA4DTa0A2

1 þ 2A4DTa2 þ A2Tz;ccA
2
1Þð1� e�A1tÞ

A3
1

,

B3 ¼ e�t=t2A1ðT z;2;f � Tz;2;iÞðA2t2 þ A3Þ,
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B4 ¼ e�A1tðt2T z;2;iA1A2 þ A5DTa1 � DTa1A5A1t2
� T z;2;fA1A3 þ Tz;2;iA1A3 � A2T z;2;f Þ,

B5 ¼ e�tdl=t2 ½A2T z;2;i � DTa2tðA4tþ 2A5Þ

þ e�A1tðDTa1A5 � T z;2;iA2Þ � DTa1ðA4tþ A5Þ�

þ ½DTa2tðA4tþ 2A5Þ þ DTa1ðA4tþ A5Þ � A2T z;2;f �,

and

B6 ¼ A1ðA1t2 � 1Þð1� e�tdl=t2Þ.

Secondly, the solution of Eq. (E.2) with an initial
condition D _Qzð0Þ ¼ D _Qz;i and zone temperature difference
term expressed as (E.4) with Tz,1,i ¼ Tz,2,i ¼ Tz,i and
Tz,1,f ¼ Tz,2,f ¼ Tz,f is

D _QzðtÞ ¼ B1 þ B2 þ
½e�A1tðB3Þ þ B4 þ B5ðt1A1 � 1Þ þ B6�

B7

(E.6)

where

B1 ¼
�A4DTa1 þ e�A1tðA4DTa1 þ 2A5DTa2Þ � 2DTa2ðA4tþ A5Þ

A2
1

,

B2 ¼
A4ð2DTa2 þ DTa0A2

1Þð1� e�A1tÞ

A3
1

,

B3 ¼ ðD _Qz;iA
2
1t1 � A5DTa1t1A1 þ T z;fA3A1 � D _Qz;iA1

� T z;iA3A1 � A2T z;i þ A5DTa1 þ A2T z;f Þðt2A1 � 1Þe�tdl=t2

þ ½ðt2A1 � 1ÞðA5DTa1 � D _Qz;iA1Þe
ð�tdl=t1Þ�ð�tdl=t2Þ

þ ð�A5DTa1t2A1 þ T z;iA3A1 � T z;fA3A1 þ D _Qz;iA
2
1t2

þ A2Tz;i � A2T z;f � D _Qz;iA1 þ A5DTa1Þe
�tdl=t1 þ ðA5DTa1�

D _Qz;iA1Þðt2A1 � 1Þ�ðt1A1 � 1Þ þ A1ðTz;f � Tz;iÞðt1 � t2Þ

ðA3A1 þ A2Þ,

B4 ¼ e�t=t2A1ð1� e�tdl=t2Þðt2A1 � 1ÞðT z;f � T z;iÞðt1A2 þ A3Þ,

B5 ¼ e�tdl=t1fe�t=t2A1ðt2A2 þ A3ÞðT z;f � T z;iÞ

þ ðt2A1 � 1Þ½�A2ðTz;f � Tz;iÞ þ DTa1ðA4tþ A5Þ

þ DTa2tð2A5 þ A4tÞ�g þ e�t=t2A1ðt2A2 þ A3Þ

� ðT z;i � T z;f Þ þ ðt2A1 � 1Þ½e�tdl=t2 ðA2T z;f þ DTa1A4t

þ 2DTa2A5t� A2Tz;i þ DTa2A4t2 þ A5DTa1Þ

� eð�tdl=t1Þ�ðtdl=t2ÞðDTa1A4tþ A5DTa1 þ 2DTa2A5t

þ DTa2A4t
2Þ � DTa2tð2A5 þ A4tÞ�,

B6 ¼ DTa1ðA4tþ A5Þð1� t1A1Þðt2A1 � 1Þ

and

B7 ¼ A1ðt2A1 � 1Þ t1A1 � 1ð Þðe�tdl=t1 þ e�tdl=t2 � e�tdl=t1�tdl=t2 � 1Þ.
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